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Escape from noisy intermittent repellers
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Intermittent or marginally stable repellers are commonly associated with a power law decay in the survival
fraction. We demonstrate how the presence of weak additive noise alters the spectrum of the Perron-Frobenius
operator significantly, giving rise to exponential decays even in systems that are otherwise regular. Implica-
tions for ballistic transport in marginally stable miscrostructures are also discussed.

PACS numbds): 05.45.Ac, 05.40.Ca

There exist a variety of physical situations where onecantly alter the way people look at signatures of low-
deals with the escape of trajectories from repellers. For indimensional chaos in various experimental situations where
stance, nuclear physicists are interested in the escape of pamise is inevitable and often desirable. First, however, we
ticles along fission channels. Similarly, in the study of trans-shall consider a one-dimensional intermittent map and study
port coefficients in two-dimensional ballistic conductors, oneits spectrum in the presence of weak noise.
has to worry about the trapping time and its relationship with A trajectory in the presence of additive noise is generated
the geometry of the systefil]. By and large, it is now ac- by the iteration
cepted that hyperbolicchaotig dynamics leads to an expo-
nential decay in the number of trapped particles while inter- Xne1=F(X,)+ &, 2)
mittency or marginal stability results in power law decays.

shows a power law decrease in tharvival fractionwhile 2 apove, and,e[a,b]. An initial density of trajectoriess(x)

(hyperbolig enclosure created by the intersection of threeayglves according to the Perron-Frobenius equdidn
disks shows an exponential decay in the number of trapped

particles. The reason for this difference is intuitively clear

from the following argument: Consider that there &rgar- (£Oo¢)(x)=j dys(x—f(y))e(y), (3
ticles distributed uniformly ir(Birkhoff) phase spack?] and
there is a hole along the wall g of extentAqg. The (av-
erage fraction of particles that escape at each bounce i
identical for a chaotic system and proportionalq, since
the particles remain uniformly distributed with time. Thus
the survival fraction decays exponentially. In a marginally
stable system, however, an initial uniform distribution does
not remain uniform at each bounce since individual particles _
tend to stick around stable islands. A heuristic derivation of $0x) ; Ca®ulX), @
the power law decay can be found [i8], and we merely

remark here that the decay exponent is often difficult to deso that the fraction of particles that survineterates of the
termine analytically and that an interesting advancement imap is

this direction has been achieved recently by Dalhqwist

%n the unperturbed case. Thus, the eigenvalues and eigen-
unctions ofL, determine the escape rate in an open system.

More specifically, assuming that the spectrum is discrete, an

initial density ¢(x) can be expanded as

We are interested here in a situation where marginal sta- b b
bility or intermittency is accompanied by weak additive f dx(Lged)(x) f dXxe,(X)
noise. Such a situation can arise, for instance, in an imper- I'(n)= a => ATc a
fectly fabricated ballistic conductor in the shape of a triangle bd a bd
or stadium where reflection is no longer specular but has a X(X) a Xp(x)

additive noise. Thus
~Aj=e "N a5 N, (5)
An+1=f1(dn,Pn),
(1)  Inthe above{A,} are the eigenvalues corresponding to the
Pn+1= F2(dn,Pn) +&n, eigenfunctions{¢,(x)} and A, is the leading eigenvalue
with the largest real part. The discreteness assumption, how-
whereq,p are the Birkhoff coordinateg2], f,,f, are the ever, holds only when the dynamics is hyperbolic. In the
bounce maps, ang, is a random variable withé,)=0 hav-  presence of marginally stable cycles, the spectrum has a con-
ing a normalized distributiog(¢) (normally taken to be a tinuous part leading to a power law decay of correlations
Gaussian with zero meanThe question that we pose is: closed systemsor survival fraction(in open systems
does one expect to find a power law decay in such a situa- The presence of additive noise results in a modified kernel
tion? The answer, we believe, is interesting and can signifiwhose formal expression is well knov8]:
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0
(£°¢)(X)=f dyL(X,y)é(y), (6)
where
L(X,y)=0,(x—f(y)) (7 =
=
50(X)=J o(X—£)g(£)dé=g(x). (8
As before, if the spectrum of is discrete, the decay is
exponential and the leading eigenvalue determines the 605
asymptotic decay rate. 14 , . . . . >
Note that we have so far steered clear of spillover effects 200 400 600 BOO 1000 1200 1400
due to noisgd7]. The most commonly adopted technique is _ ) )
the use ofperiodic boundary conditionsvhich avoids spill- FIG. 1. The survival fractiod’(n) for s=0.5, 0.7, and 0.9 with

0=0.002. The straight linegdashed are the best fit exponential

over altogether. Alternately, one can work in the infinite do- o DR gl TTIEREO, . X
9 y decays. The initial distribution in each case consists 6f pints.

main (—o,%) so that natural boundary conditions may be
employed. Yet another approach is to tailor the noise distri-
bution so that the probability of the dynamical variable es- { {n}
caping from the interval is zero. We shall, in this paper, have rm=2> lg=> A—q > 2 p
occasion to use the second and third approaches depending a q por=l |AP|
on the problem, and it must be noted that there are other (11)
approaches to the spillover problem that may be more real- z :i —n(im §‘1(2)>dz
istic in a given situation. Note that the spectrum and eigen- " 2m7i '
functions of £ can be sensitive to the choice of boundary
conditions. where{ ™ (z) =I1,(1—z"/|A|) is the dynamical zeta func-
With this background, we now introduce the intermittenttion andy is a(small) negatively oriented contour around the
map[4,8] origin. Dahlqvist{4] has recently shown that, in tm@iseless
case,. (z) has a singularity of the type Hz)lls. It then
x(1+x?), x<0 follows [4] from Eq. (11) that the survival fractionl’(n)
fx)={ X[1+p(2x)5], 0=x<1/2 @ 1/ns for an initial uniform distribution of particles.
The ¢ function is also(approximately related to the ei-
genvalues ofZ through the relation

nrn

2x—1, x>1/2,

wheres>0 andp>1. The particle is considered to escape if o

Xn+1<0 Or X,.1>1. The map is defined in the infinite do- Tren=S AN= 2 E On.m, ~z . (12)

main so that natural boundary conditions apply on the den- “ = A"

sity. The intermittency here is due to the fact that0)=1

so that the fixed point=0 is marginally or neutrally stable. When the{ function is analytic, its zero$z,} are isolated
For an initialuniformdistribution of particles iri0,1], the  and related to\ , asA ,=1/z,. On the other hand, when the

fraction that survives one iterate is clearly the sum of the twasystem is intermittent and~1(z) displays a branch cut, the

intervals I and Ig for which O<f(x)<1. Similarly, the  spectrum of£ no longer remains discrete. Thus intermittency

fraction that survives two iterates is the sum of the four in-leads to an asymptotic power law decay. Ber0.7p=1.2,

tervalsl I r,IrL.lrrfOr which 0<f?(x)<1. Generaliza- the initial decay is exponential, however, and this is ascribed

tion in this casdof binary symbolic dynamigss simple: the to a pair of complex conjugate roofd]. The power law

fraction that survives iterates is the sum of the'2ntervals  behavior emerges only after 600 iterations of the map.

for each of which 8<f"(x)<1. Each of these intervals con-  We now consider the mafEq. (9)] with weak additive

tains a periodic point and the larger it®)stability, the = Gaussian noise

smaller the size of the interval. Th{i§]

p

1
a, 9(8)= ——=e & (13
== (10) 2mo

q
o for s=0.9, 0.7, and 0.5 and witle=0.002 (see Fig. 1

whereq is a symbol sequence of lengtitonsisting of. and  Clearly there is a transition from a power law to an exponen-

R, which denotes the order in which the left and righttja| decay in the presence of weak noise in each of the three

branchegwith respect tax=1/2) of the map are visitedl;  cases for larger. Note, however, that the initial decay, al-

is a constant and ;= (d/dx) f"(x) |, is the stability of the  though exponential, is at a significantly different rate and the

periodic point. The survival fraction can thus be expressed aslope ofl'(n) settles down to the asymptotic valgeadually

[4,5] after a large number of iterations.
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0.4 r r . . r TABLE I. The leading eigenvalud y computed by discretizing
- o ° o L(x,y) compared to the best fit valuks;, (see Fig. 1 for three
03} . o . 1 different parameter values.
02 : . o | S Ao At
01 . 1 0.5 0.99470 0.99467
g 0 - 0.7 0.99508 0.99502
E o 0.9 0.99553 0.99546
01 ° ° -
02F Lo ’ . chaotic systems. Specifically, we shall consider triangular
L R billiards, which are nonchaotic though generically noninte-
03¢ R ° 1 grable. The only integrable examples are thé3(w/3,7/3),
P , T , , . (m12,713,716), and @r/2,7/4,7/4) triangles, while all other
04 02 0 0-2Re(A)0-4 0.6 0.8 rational triangles have at least one internal angle of the form
ma/n, m>1 and are nonintegrable. Their invariant surface,
FIG. 2. The spectrum of for s=0.7 ando=0.002. though two dimensional, is not a torus but topologically

equivalent to a sphere with multiple holes. Also, these sys-
Two inferences can be drawn from this transition fromtems are nonchaotic although irrational triangles are possibly
power law to exponential behavior. First, the presence ogrgodic and even display the weak mixing prope§]. A
weak noise makes the eigenvalye$ £, see Eq.(6)] dis- linear stability analysis shows that the Jacobian matrix has
crete. Also, there are closely spaced eigenvalues with smalinit eigenvalues and hence these billiards are marginally
differences in their real parts around the leading eigenvalustable[12].
A, which leads to the gradual change in slopd’¢h). Consider such a triangular billiard of unit perimeter and
The discreteness of the spectrum follows from the faclet g,p denote the Birkhoff coordinates. Hegeis measured
that the noisy kernel is integrable and bounded. The correalong the boundary while=sin(6), where ¢ is the angle
sponding Fredholm determinafitQ] is thus entire and its between the ray and the inward normal at the boundary point
zeros (1A ,) are isolated. Thus, even for very weak noise,q. Thusqe[0,1] andpe[—1,1]. In a typical experiment,
the spectrum is discrete although the transition time may bene considers an initial uniform distribution of particles
too large for the final exponential decay to be observed ex¢~10°) in this phase space, evolving freely between
perimentally. bounces and reflecting specularly from the walls. The par-
The closely spaced eigenvalues aroukgl are possibly ticles are allowed to escape through a small openirug, aff
remnants of the continuous spectrum that exists for thextent Aq, (=0.005). For both the integrablem(2,7/3)
noiseless case. In order to understand this better, we hawid nonintegrable (¥8/31,177/97) triangles considered, the
evaluated the eigenvalues gf by discretizing the integral initial decay is exponential while the asymptotic decay is a
equation and diagonalizing the resulting maff®{. Recall  power law,I'(n)~n~#, with 3=1.035 in the integrable case
that a Fredholm integral equation exists as a limit of a dis-and 8=1.085 in the nonintegrabl\l) case. Thus preexpo-
crete sunj10], so that a matrix representation is adequate smential decays are not exceptional and can persist for a long
long as its order is large and spurious eigenvalues are elimiime in marginally stable systems.
nated. Figure 2 shows a plot of the eigenvalueCdbr s A more realistic situation should include noise, however.
=0.7 ando=0.002[see Eq(9)] obtained using a matrix of For instance, imperfections can give rise to maps of the type
size 2500 2500. We have checked that the relevant eigenconsidered in Eq(1). This leads to interesting results. For
values on the positive real axis have converged to the fourtiGaussian noisén Birkhoff momentum with o=0.000 001,
significant digit. a single exponential decay dominates the survival fraction in
Clearly, the closely spaced eigenvalues along the real linthe NI case forn>5000 while in the integrable case the
do not allow the survival fraction to be dominated by thetransition continues beyonch=14000. Moreover, the
leading eigenvalue for smail An order of magnitude evalu- closely spaced eigenvalues lead to a quasialgebraic decay in
ation of the transition time can be made by noting thatthe interval 6008cn<14 000 for the integrable case. Note
[(n)=e ""Ao(dy+d;e " "M’y whereA ; is the next  that most trajectories remain largely unaffected for several
to leading eigenvalue and,=c,fdx¢,(x). Thus, forn  hundred bounces for the value @fconsidered, so thdt(n)
>Nyans= 1/IN(Ag/A,), the leading eigenvalue dominates. closely follows the noiseless case initially. Thus, even when
For the three values of consideredny,ns=98,105,119 for  the asymptotic decay is exponential, transition times can be
s=0.5,0.7,0.9, respectively so that exponential decay sets ivery large.
first for s=0.5 as observed in Fig. 1. Thus the difference In the weak noise case, the evolution operator can be
between the leading and the next to leading eigenvalueapproximated as
gives a good qualitative picture and fixes a lower bound for
the transition time. Note also that, for each of the thsee
values considered, the leading eigenvalue accurately repro-
duces the asymptotic decay of the survival fracti@ee
Table ). where £(x)=3;¢(x)/|f'(f (x))| and the summation is
We now turn our attention to the effect of noise in nonover the different branches of the inverse map. Using a poly-

2

(Lo B) () =E(X)+ 5 €'(), (14
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nomial basigd9], a matrix representation of the operator can 0
be constructed where the elements,,=(d™dx™{L
o(x"/n!)}. Writing o aso;+ o, whereoy,=0", a perturba-
tion calculation shows that the eigenvalygesd thus the dif- 4l R noiseloss
ference betweer\, and A,) decrease asri when o4 is [ (Integrable)
small. The transition time therefore decreases with noise. R N —
For o=0.000 05(see Fig. 3, the transition time decreases
significantly and exponential decay sets infior 3500 in the
integrable case while the leading eigenvalue dominates frorn
the beginning in the nonintegrable case. Thus the gap be -10}
tweenAy and A, increases with noise. (Integrable)
In conclusion, the broad picture that emerges from these "2
numerical experiments is as followsi) Additive noise
makes the spectrum of the evolution operator discrgite. 1467000 2000 3000 4000 5000 6000 7000
When the dynamics is intermittent or regular and the noise
weak, exponential decays may emerge only asymptotically FIG. 3. I'(n) for the (w/2,m/3,7/6) (integrable and the
due to the presence of closely spaced eigenvalues around thE7/31,17r/97) (nonintegrablg triangles, along with the best fit
leading eigenvalud ,. These are remnants of the continuouseXponem'al(daShed lingin the integrable case. Here=0.000 05
S0 . .. and A¢y=0.005.
spectrum that exists in the zero noise case. The transition
phase in such a situation can mimic an algebraic decay.
There are important fallouts of this conclusion. In experi-vival fraction [13]. The present analysis, however, shows
mental situations where noise is inevitable, signatures of exthat noisy intermittent dynamics can also give rise to Lorent-
ponential decays are not necessarily indicative of chaotic dyzian line shapes, and it is interesting to note that there are
namics. For instance, semiclassical theory links Lorentziainstances where observations on regular or marginally stable
line shapes observed in experiments on ballistic transport inavities have been found to be no different from those on
chaotic microstructures to the exponential decay in the surehaotic cavitie§13].
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