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Escape from noisy intermittent repellers

Debabrata Biswas
Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

~Received 8 March 2000!

Intermittent or marginally stable repellers are commonly associated with a power law decay in the survival
fraction. We demonstrate how the presence of weak additive noise alters the spectrum of the Perron-Frobenius
operator significantly, giving rise to exponential decays even in systems that are otherwise regular. Implica-
tions for ballistic transport in marginally stable miscrostructures are also discussed.

PACS number~s!: 05.45.Ac, 05.40.Ca
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There exist a variety of physical situations where o
deals with the escape of trajectories from repellers. For
stance, nuclear physicists are interested in the escape of
ticles along fission channels. Similarly, in the study of tra
port coefficients in two-dimensional ballistic conductors, o
has to worry about the trapping time and its relationship w
the geometry of the system@1#. By and large, it is now ac-
cepted that hyperbolic~chaotic! dynamics leads to an expo
nential decay in the number of trapped particles while int
mittency or marginal stability results in power law decay
Thus, a rectangular billiard table with a hole in the w
shows a power law decrease in thesurvival fractionwhile a
~hyperbolic! enclosure created by the intersection of thr
disks shows an exponential decay in the number of trap
particles. The reason for this difference is intuitively cle
from the following argument: Consider that there areN par-
ticles distributed uniformly in~Birkhoff! phase space@2# and
there is a hole along the wall atq0 of extentDq0. The ~av-
erage! fraction of particles that escape at each bounce
identical for a chaotic system and proportional toDq0 since
the particles remain uniformly distributed with time. Thu
the survival fraction decays exponentially. In a margina
stable system, however, an initial uniform distribution do
not remain uniform at each bounce since individual partic
tend to stick around stable islands. A heuristic derivation
the power law decay can be found in@3#, and we merely
remark here that the decay exponent is often difficult to
termine analytically and that an interesting advancemen
this direction has been achieved recently by Dalhqvist@4#.

We are interested here in a situation where marginal
bility or intermittency is accompanied by weak additiv
noise. Such a situation can arise, for instance, in an im
fectly fabricated ballistic conductor in the shape of a trian
or stadium where reflection is no longer specular but
additive noise. Thus

qn115 f 1~qn ,pn!,
~1!

pn115 f 2~qn ,pn!1jn ,

where q,p are the Birkhoff coordinates@2#, f 1 , f 2 are the
bounce maps, andjn is a random variable witĥjn&50 hav-
ing a normalized distributiong(j) ~normally taken to be a
Gaussian with zero mean!. The question that we pose is
does one expect to find a power law decay in such a si
tion? The answer, we believe, is interesting and can sign
PRE 621063-651X/2000/62~2!/2085~4!/$15.00
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cantly alter the way people look at signatures of lo
dimensional chaos in various experimental situations wh
noise is inevitable and often desirable. First, however,
shall consider a one-dimensional intermittent map and st
its spectrum in the presence of weak noise.

A trajectory in the presence of additive noise is genera
by the iteration

xn115 f ~xn!1jn , ~2!

where f (x) is a map,jn is a random variable as describe
above, andx0P@a,b#. An initial density of trajectoriesf(x)
evolves according to the Perron-Frobenius equation@5#,

~L0+f!~x!5E dyd„x2 f ~y!…f~y!, ~3!

in the unperturbed case. Thus, the eigenvalues and ei
functions ofL0 determine the escape rate in an open syst
More specifically, assuming that the spectrum is discrete
initial densityf(x) can be expanded as

f~x!5(
a

cawa~x!, ~4!

so that the fraction of particles that surviven iterates of the
map is

G~n!5

E
a

b

dx~L 0
n+f!~x!

E
a

b

dxf~x!

5(
a

La
nca

E
a

b

dxwa~x!

E
a

b

dxf~x!

;L0
n5e2n ln(1/L0) as n→`. ~5!

In the above,$La% are the eigenvalues corresponding to t
eigenfunctions$wa(x)% and L0 is the leading eigenvalue
with the largest real part. The discreteness assumption, h
ever, holds only when the dynamics is hyperbolic. In t
presence of marginally stable cycles, the spectrum has a
tinuous part leading to a power law decay of correlations~in
closed systems! or survival fraction~in open systems!.

The presence of additive noise results in a modified ker
whose formal expression is well known@6#:
2085 ©2000 The American Physical Society
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~L+f!~x!5E dyL~x,y!f~y!, ~6!

where

L~x,y!5ds„x2 f ~y!… ~7!

ds~x!5E d~x2j!g~j!dj5g~x!. ~8!

As before, if the spectrum ofL is discrete, the decay i
exponential and the leading eigenvalue determines
asymptotic decay rate.

Note that we have so far steered clear of spillover effe
due to noise@7#. The most commonly adopted technique
the use ofperiodic boundary conditions, which avoids spill-
over altogether. Alternately, one can work in the infinite d
main (2`,`) so that natural boundary conditions may
employed. Yet another approach is to tailor the noise dis
bution so that the probability of the dynamical variable e
caping from the interval is zero. We shall, in this paper, ha
occasion to use the second and third approaches depen
on the problem, and it must be noted that there are o
approaches to the spillover problem that may be more r
istic in a given situation. Note that the spectrum and eig
functions ofL can be sensitive to the choice of bounda
conditions.

With this background, we now introduce the intermitte
map @4,8#

f ~x!5H x~11x2!, x,0

x@11p~2x!s#, 0<x,1/2

2x21, x.1/2,

~9!

wheres.0 andp.1. The particle is considered to escape
xn11,0 or xn11.1. The map is defined in the infinite do
main so that natural boundary conditions apply on the d
sity. The intermittency here is due to the fact thatf 8(0)51
so that the fixed pointx50 is marginally or neutrally stable

For an initialuniformdistribution of particles in@0,1#, the
fraction that survives one iterate is clearly the sum of the t
intervals I L and I R for which 0< f (x)<1. Similarly, the
fraction that survives two iterates is the sum of the four
tervalsI LL ,I LR ,I RL ,I RR for which 0< f 2(x)<1. Generaliza-
tion in this case~of binary symbolic dynamics! is simple: the
fraction that survivesn iterates is the sum of the 2n intervals
for each of which 0< f n(x)<1. Each of these intervals con
tains a periodic point and the larger its~in!stability, the
smaller the size of the interval. Thus@5#

I q
$n%5

aq

Lq
, ~10!

whereq is a symbol sequence of lengthn consisting ofL and
R, which denotes the order in which the left and rig
branches~with respect tox51/2) of the map are visited,aq
is a constant andLq5(d/dx) f n(x)uxPI q

is the stability of the
periodic point. The survival fraction can thus be expresse
@4,5#
e

ts

-

i-
-
e
ing
er
l-
-

t

f

-

o

-

t

as

G~n!5(
q

$n%

I q5(
q

$n}
aq

Lq
;(

p
(
r 51

` npdn,rnp

uLpur
5Zn ,

~11!

Zn5
1

2p i Eg
z2nS d

dz
ln z21~z! Ddz,

wherez21(z)5)p(12znp/uLpu) is the dynamical zeta func
tion andg is a~small! negatively oriented contour around th
origin. Dahlqvist@4# has recently shown that, in thenoiseless
case,z21(z) has a singularity of the type (12z)1/s. It then
follows @4# from Eq. ~11! that the survival fractionG(n)
;1/n1/s for an initial uniform distribution of particles.

The z function is also~approximately! related to the ei-
genvalues ofL through the relation

Tr L n5(
a

La
n5(

p
(
r 51

` npdn,rnp

u12Lpur
.Zn . ~12!

When thez function is analytic, its zeros$zk% are isolated
and related toLa asLa51/zk . On the other hand, when th
system is intermittent andz21(z) displays a branch cut, the
spectrum ofL no longer remains discrete. Thus intermitten
leads to an asymptotic power law decay. Fors50.7,p51.2,
the initial decay is exponential, however, and this is ascrib
to a pair of complex conjugate roots@4#. The power law
behavior emerges only after 600 iterations of the map.

We now consider the map@Eq. ~9!# with weak additive
Gaussian noise

g~j!5
1

A2ps2
e2j2/2s2

~13!

for s50.9, 0.7, and 0.5 and withs50.002 ~see Fig. 1!.
Clearly there is a transition from a power law to an expon
tial decay in the presence of weak noise in each of the th
cases for largen. Note, however, that the initial decay, a
though exponential, is at a significantly different rate and
slope ofG(n) settles down to the asymptotic valuegradually
after a large number of iterations.

FIG. 1. The survival fractionG(n) for s50.5, 0.7, and 0.9 with
s50.002. The straight lines~dashed! are the best fit exponentia
decays. The initial distribution in each case consists of 1010 points.
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Two inferences can be drawn from this transition fro
power law to exponential behavior. First, the presence
weak noise makes the eigenvalues@of L, see Eq.~6!# dis-
crete. Also, there are closely spaced eigenvalues with s
differences in their real parts around the leading eigenva
L0, which leads to the gradual change in slope ofG(n).

The discreteness of the spectrum follows from the f
that the noisy kernel is integrable and bounded. The co
sponding Fredholm determinant@10# is thus entire and its
zeros (1/La) are isolated. Thus, even for very weak nois
the spectrum is discrete although the transition time may
too large for the final exponential decay to be observed
perimentally.

The closely spaced eigenvalues aroundL0 are possibly
remnants of the continuous spectrum that exists for
noiseless case. In order to understand this better, we
evaluated the eigenvalues ofL by discretizing the integra
equation and diagonalizing the resulting matrix@9#. Recall
that a Fredholm integral equation exists as a limit of a d
crete sum@10#, so that a matrix representation is adequate
long as its order is large and spurious eigenvalues are e
nated. Figure 2 shows a plot of the eigenvalues ofL for s
50.7 ands50.002@see Eq.~9!# obtained using a matrix o
size 250032500. We have checked that the relevant eig
values on the positive real axis have converged to the fo
significant digit.

Clearly, the closely spaced eigenvalues along the real
do not allow the survival fraction to be dominated by t
leading eigenvalue for smalln. An order of magnitude evalu
ation of the transition time can be made by noting th
G(n).e2n ln(1/L0)(d01d1e2n ln(L0 /L1)), whereL1 is the next
to leading eigenvalue andda5ca*dxfa(x). Thus, for n
@ntrans51/ln(L0 /L1), the leading eigenvalue dominate
For the three values ofs considered,ntrans.98,105,119 for
s50.5,0.7,0.9, respectively so that exponential decay se
first for s50.5 as observed in Fig. 1. Thus the differen
between the leading and the next to leading eigenva
gives a good qualitative picture and fixes a lower bound
the transition time. Note also that, for each of the thres
values considered, the leading eigenvalue accurately re
duces the asymptotic decay of the survival fraction~see
Table I!.

We now turn our attention to the effect of noise in n

FIG. 2. The spectrum ofL for s50.7 ands50.002.
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chaotic systems. Specifically, we shall consider triangu
billiards, which are nonchaotic though generically nonin
grable. The only integrable examples are the (p/3,p/3,p/3),
(p/2,p/3,p/6), and (p/2,p/4,p/4) triangles, while all other
rational triangles have at least one internal angle of the fo
mp/n, m.1 and are nonintegrable. Their invariant surfac
though two dimensional, is not a torus but topologica
equivalent to a sphere with multiple holes. Also, these s
tems are nonchaotic although irrational triangles are poss
ergodic and even display the weak mixing property@11#. A
linear stability analysis shows that the Jacobian matrix
unit eigenvalues and hence these billiards are margin
stable@12#.

Consider such a triangular billiard of unit perimeter a
let q,p denote the Birkhoff coordinates. Hereq is measured
along the boundary whilep5sin(u), whereu is the angle
between the ray and the inward normal at the boundary p
q. Thus qP@0,1# and pP@21,1#. In a typical experiment,
one considers an initial uniform distribution of particle
(;108) in this phase space, evolving freely betwe
bounces and reflecting specularly from the walls. The p
ticles are allowed to escape through a small opening atq0 of
extent Dq0 (50.005). For both the integrable (p/2,p/3)
and nonintegrable (18p/31,17p/97) triangles considered, th
initial decay is exponential while the asymptotic decay is
power law,G(n);n2b, with b51.035 in the integrable cas
andb51.085 in the nonintegrable~NI! case. Thus preexpo
nential decays are not exceptional and can persist for a
time in marginally stable systems.

A more realistic situation should include noise, howev
For instance, imperfections can give rise to maps of the t
considered in Eq.~1!. This leads to interesting results. Fo
Gaussian noise~in Birkhoff momentum! with s50.000 001,
a single exponential decay dominates the survival fraction
the NI case forn.5000 while in the integrable case th
transition continues beyondn514 000. Moreover, the
closely spaced eigenvalues lead to a quasialgebraic dec
the interval 6000,n,14 000 for the integrable case. No
that most trajectories remain largely unaffected for seve
hundred bounces for the value ofs considered, so thatG(n)
closely follows the noiseless case initially. Thus, even wh
the asymptotic decay is exponential, transition times can
very large.

In the weak noise case, the evolution operator can
approximated as

~L+f!~x!.j~x!1
s2

2
j9~x!, ~14!

where j(x)5( if(x)/u f 8„f i
21(x)…u and the summation is

over the different branches of the inverse map. Using a po

TABLE I. The leading eigenvalueL0 computed by discretizing
L(x,y) compared to the best fit valueL f i t ~see Fig. 1! for three
different parameter values.

s L0 L f i t

0.5 0.99470 0.99467
0.7 0.99508 0.99502
0.9 0.99553 0.99546
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2088 PRE 62DEBABRATA BISWAS
nomial basis@9#, a matrix representation of the operator c
be constructed where the elementsLmn5(dm/dxm)$L
+(xn/n!) %. Writing s ass11s0 wheres0.01, a perturba-
tion calculation shows that the eigenvalues~and thus the dif-
ference betweenL0 and L1) decrease ass1

2 when s1 is
small. The transition time therefore decreases with noise

For s50.000 05~see Fig. 3!, the transition time decrease
significantly and exponential decay sets in forn.3500 in the
integrable case while the leading eigenvalue dominates f
the beginning in the nonintegrable case. Thus the gap
tweenL0 andL1 increases with noise.

In conclusion, the broad picture that emerges from th
numerical experiments is as follows.~i! Additive noise
makes the spectrum of the evolution operator discrete.~ii !
When the dynamics is intermittent or regular and the no
weak, exponential decays may emerge only asymptotic
due to the presence of closely spaced eigenvalues aroun
leading eigenvalueL0. These are remnants of the continuo
spectrum that exists in the zero noise case. The trans
phase in such a situation can mimic an algebraic decay.

There are important fallouts of this conclusion. In expe
mental situations where noise is inevitable, signatures of
ponential decays are not necessarily indicative of chaotic
namics. For instance, semiclassical theory links Lorentz
line shapes observed in experiments on ballistic transpo
chaotic microstructures to the exponential decay in the
et
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vival fraction @13#. The present analysis, however, show
that noisy intermittent dynamics can also give rise to Lore
zian line shapes, and it is interesting to note that there
instances where observations on regular or marginally st
cavities have been found to be no different from those
chaotic cavities@13#.

FIG. 3. G(n) for the (p/2,p/3,p/6) ~integrable! and the
(18p/31,17p/97) ~nonintegrable! triangles, along with the best fi
exponential~dashed line! in the integrable case. Heres50.000 05
andDq050.005.
P.
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